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WHY WE WANT TO USE EHRS FOR CLINICAL

RESEARCH

Data readily available
Often 100,000’s of Patients
Information collected over a variety of fields
Can study just about any clinical outcome
Representative Population
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WHAT WE CAN DO WITH ELECTRONIC HEALTH

RECORDS

1 Risk Prediction
Near term prediction - Risk of inhospital sepsis
Long(er) term risk - 30 Day Revisit

2 Population Health
Health Service Utilization - Assessment of high utilizers
Disease Epidemiology - Experience of incident diabetes in Durham
County

3 Comparative Effectiveness Research (CER)
Retrospective Studies - Assessment of community intervention for
diabetics (SEDI)
Prospective Studies - Point of care randomization

4 Association Analyses
Risk factors for disease - Phenome Wide Association Studies
Data mining - Drug-Drug interactions
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WHY WE MAY Not WANT TO USE EHRS FOR CLINICAL

RESEARCH

DATA ARE NOT COLLECTED FOR RESEARCH

Data exist in disparate places
All patients have different pieces of information
Observational Data
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1 STRUCTURE OF ELECTRONIC HEALTH RECORDS
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3 CONCLUDING THOUGHTS
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THE EHR FRONT END:
GETTING DATA IN
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DATA MOVE FRONT END TO DATA WHAREHOUSE
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THE DATA STRUCTURE
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CHECK THE BLIND SPOTS

Data movement and
curation requires
decision-making.
Decisions may not be easily
accessible.
Decisions may not be
documented or
documentation may not be
made available.
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TURNING EHRS INTO DATA
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DATA MARTS:
STRENGTHS AND WEAKNESSES

Strengths
Registry like
Multiple clinical subject areas for cohort
Regularly scheduled data refresh
Ideal For: Posing variety of questions across subject area

Soft Spots
More time and effort to create than data extract
Structure not easily adaptable
Data are fixed between refreshes
Not Ideal For: Small, targeted analyses
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ADDING INFORMATION BACK INTO EHR

Dashboards
Best Practice Alerts
Predictive Analytics
Clinical trial recruitment (Snifters)
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DIFFERENT TYPES OF CLINIC ENVIRONMENTS

Clinic Based System (e.g. Practice Fusion, Flatiron)
Capture Routine Care
Local Population
Misses inpatient activity

Hospital Based System
Observe inpatient procedures and events
Only observe when sick
Referral hospitals may not represent local or stable population

Comprehensive Medical System (e.g. VA, Kaiser)
Observe all types of patient encounters
May represent artificial population
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FOUR WAYS EHR DATA DIFFER FROM

TRADITIONAL CLINICAL DATA

1 We don’t have everything we want
2 Outcomes are not defined - need to phenotype data
3 Data irregularly and potentially densely observed
4 Data not observed randomly - Informed Presence
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MOST EHRS ARE INCOMPLETE

Patients seek care at multiple facilities
Missing information on when individuals are healthy
EHRs don’t always contain all the data you want
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LINKING EHR DATA

Data from other facilities (PCORNet)
Claims: Center for Medicaire & Medicaid Services (CMS)
Mortality: National Death Index (NDI) & Social Security Death
Index (SSDI)
Genetic Data
GeoCode Information: American Community Survey (ACS)
Personal Tracking Data: FitBit, sensors
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ISSUES OF DATA DEFINITION:
WHAT IS A DIABETIC?

  Richesson RL, Rusincovitch SA, Wixted D, Batch BC, Feinglos MN, Miranda ML, Hammond WE, Califf RM, Spratt SE. A Comparison of Phenotype 
Definitions for Diabetes Mellitus. J Am Med Inf Assoc 2013 (epub ahead of print). http://www.ncbi.nlm.nih.gov/pubmed/24026307
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ISSUES OF DATA DEFINITION:
WHAT IS A DIABETIC?

ICD-9 250.x0 Expand. ICD-9
ICD-9 & 250.x2 (249.xx, 357.2, Abnormal Diabetes
250.xx (exclude type I) 362.0x, 366.41) HbA1c Glucose OGTT Meds

ICD-9 250.xx X
CMS CCW X* X*
NYC A1c Registry X
Meds X
DDC X X X X X X
SUPREME-DM X* X* X X X X
eMERGE X* X X X

* Distinction between Inpatient and Outpatient Visits
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DEFINITION DIFFERENCES
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IMPACT OF POORER DEFINITIONS
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ADDITIONAL PHENOTYPING CHALLENGES

Death: Internal work estimates 20% capture of deaths
Disease Incidence: Need to apply ‘burn-in’ periods
Censoring: Need to apply ‘burn-out’ periods
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MULTIPLE MEASUREMENTS PER PERSON

OPPORTUNITIES

Get to observe patient’s evolving health status
More frequent visits than a typical longitudinal study
Denser visit information

CHALLENGES

Visits are irregularly spaced
Different ways to aggregate
Don’t know what you are not seeing
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LOOK AT CHANGES OVER LONG PERIODS OF TIME...
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...OR SHORT PERIODS OF TIME
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ANALYZING REPEATED MEASURES

Summarizing Data Modelling Progression
Mean/Median Values Regression Splines
Extreme Values Functional Data Analysis
Variability Joint Models
Number of Measurements
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SIMPLER METHODS OFTEN WORK BEST
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EHR DATA OPTIMIZED FOR NEARER TERM PREDICTION

ROC Curves for Forecasting SCD

False positive rate
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TOP PREDICTORS

1 Day 7 Days 30 Days
1 LabValue: Albumin LabValue: Albumin LabValue: Albumin
2 Pre Systolic BP Pre Systolic BP Pre Systolic BP
3 Pre MAP Pre MAP Lowest Systolic BP
4 Pre Pulse Pressure LabValue: WBC LabValue: Creatinine
5 LabValue: Hemoglobin Medication Dose: Epogen Pre MAP
6 Lowest Systolic BP LabValue: Creatinine Post MAP

90 Days 180 Days 365 Days
1 LabValue: Albumin LabValue: Albumin LabValue: Albumin
2 Pre Weight Pre Weight Medication Dose: Epogen
3 Pre Systolic BP Pre Map Age
4 Pre Pulse Pressure Post Weight LabValue: Creatinine
5 Medication Dose: Epogen Medication Dose: Epogen Pre Systolic BP
6 Post Weight Pre Systolic BP Pre Pulse Pressure
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TOP PREDICTORS

1 Day 7 Days 30 Days
1 LabValue: Albumin LabValue: Albumin LabValue: Albumin
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3 Pre MAP Pre MAP Lowest Systolic BP
4 Pre Pulse Pressure LabValue: WBC LabValue: Creatinine
5 LabValue: Hemoglobin Medication Dose: Epogen Pre MAP
6 Lowest Systolic BP LabValue: Creatinine Post MAP

90 Days 180 Days 365 Days
1 LabValue: Albumin LabValue: Albumin LabValue: Albumin
2 Pre Weight Pre Weight Medication Dose: Epogen
3 Pre Systolic BP Pre Map Age
4 Pre Pulse Pressure Post Weight LabValue: Creatinine
5 Medication Dose: Epogen Medication Dose: Epogen Pre Systolic BP
6 Post Weight Pre Systolic BP Pre Pulse Pressure
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DIFFERENT DATA ELEMENTS HAVE DIFFERENT

PREDICTABILITY
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BIASES IN EHRS:
INFORMED PRESENCE

We only see patients when they are sick
We only see information that is deemed important
Different environments have different policies
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INFORMED PRESENCE I:
WHERE A PERSON SEEKS CARE IS INFORMATIVE
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LOCATION IMPACTS INFERENCE

Hazard Ratio for HgB A1C for time to Myocardial Infarction

Type Hazard Ratio P-value
Unadjusted 1.06 (1.01, 1.11) 0.026

Adjusted for Location 0.97 (0.92, 1.02) 0.178
OP Only 1.07 (1.00, 1.14) 0.044
ED Only 0.94 (0.89, 0.99) 0.022

Interaction between A1C and location
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INFORMED PRESENCE II:
WHICH HOSPITAL A PATIENT USES IS INFORMATIVE
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FACILITY IMPACTS INFERENCE

Odds Ratio for Cancer Status on Diabetes

Location Odds Ratio 95% CI
All Facilities 1.69 (1.36, 2.10)
DUMC Only 1.46 (1.15, 1.87)
DRH Only 0.89 (0.63, 1.26)
LCHC Only 1.08 (0.74, 1.56)
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INFORMED PRESENCE III:
REFERAL HOSPITALS ARE AN Admixed POPULATION
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ADMIXTURE BIAS

Comparison of Local and Referal Patients at Cardiac
Catheterization Lab

Local Patients Referal Patients
Older Younger

More Comorbidities More severe valve disease
Disease due to ageing Disease due systematic factors

Better outcomes More follow-up procedures
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INFORMED PRESENCE IV:
NEED TO ACCOUNT FOR NUMBER OF ENCOUNTERS

Regression of Depression on Weight Loss

Odds Ratio ∆ log(OR) ∆ OR
Minimally Adjusted 3.98 (3.81, 4.17) — —

+ No. Encounters 2.37 (2.26, 2.50) -0.52 -1.61
+ Comorbidities 2.82 (2.69, 2.96) -0.35 -1.16

+ No. Encounters & Comorb 2.30 (2.18, 2.42) -0.55 -1.68
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NUMBER OF ENCOUNTERS POTENTIAL CONFOUNDER
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NEED TO ACCOUNT FOR NUMBER OF ENCOUNTERS

Median Number of Encounters
Sensitivity Without Condition With Condition

Depression 56.3% 6 38
Weight Loss 9.3% 7 45
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NUMBER OF ENCOUNTERS POTENTIAL CONFOUNDER
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EXTRA CARE NEEDED

Need to be mindful from where the data come
There is not always one way to turn raw data into analytic data
Which data to cut is more important than how you analyze it
New analytic techniques may be useful/necessary
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QUESTIONS TO ASK WHEN DESIGNING EHR BASED

STUDIES

Where in the health system are the data collected?
What is the coverage/catchment area of your health system?
Is the patient population receiving care across multiple
institutions/centers?
Do the data constitute different catchments? (Admixture)
How are you defining exposures and outcomes? (Phenotyping)
How are you defining person-time?

What is an appropriate burn-in period to define a cohort?
Is a burn-out period necessary to define censoring?

Do different populations produce more information (i.e. sicker
patients have more encounters)?
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ADDITIONAL FRONTIERS

Micro-randomized trials
Integration of external data
Real time risk assessment
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IS IT ALL BAD?

A LOT OF OPPORTUNITIES WITH EHRS

More studies
Cheaper studies
Faster studies
(Perhaps) More representative studies
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