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WHY WE WANT TO USE EHRS FOR CLINICAL
RESEARCH

e Data readily available

e Often 100,000’s of Patients

e Information collected over a variety of fields
e Can study just about any clinical outcome
e Representative Population
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WHAT WE CAN DO WITH ELECTRONIC HEALTH
RECORDS

@ Risk Prediction
o Near term prediction - Risk of inhospital sepsis
e Long(er) term risk - 30 Day Revisit
@ Population Health
e Health Service Utilization - Assessment of high utilizers
o Disease Epidemiology - Experience of incident diabetes in Durham
County
@ Comparative Effectiveness Research (CER)

e Retrospective Studies - Assessment of community intervention for
diabetics (SEDI)
o Prospective Studies - Point of care randomization
@ Association Analyses

o Risk factors for disease - Phenome Wide Association Studies
e Data mining - Drug-Drug interactions
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WHY WE MAY Not WANT TO USE EHRS FOR CLINICAL
RESEARCH

DATA ARE NOT COLLECTED FOR RESEARCH
o Data exist in disparate places
o All patients have different pieces of information
o Observational Data
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THE EHR FRONT END:
GETTING DATA IN
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Research with EHR Data

Concluding Thoughts

DATA MOVE FRONT END TO DATA WHAREHOUSE
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THE DATA STRUCTURE

Concluding Thoughts
It's
Complicated...
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CHECK THE BLIND SPOTS

e Data movement and
curation requires
decision-making.

e Decisions may not be easily
accessible.

o Decisions may not be
documented or
documentation may not be
made available.
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TURNING EHRS INTO DATA

The analysis pipeline and data platform

Datamart
Core Tables
“Building black data” close to native source data format . "
(often transaction level) Analytic Dataset Collections
Extracted in output format
Source Data compatible with statistical
Data Dictionary Curation Dictionary purposes, such as SAS, Each
Examples: Definitions of the source Datamart-specific collection is structured for the
» Enterprise Data Warehouse data, and mappings processing rules, logic, specific analysis and its
(EDW) between source and and algorithms used to independent/dependent
o External EHR sources > ta bles create the derived data variables. May include limited or
»  Electronic data capture anonymized datasets.
:?(t)esmssud\ as REDCap and Derived Tables
o Auyiliary data sources such as Aggregations Congistency Enforced Operational Reporting
Census data fSummarglevels | feg, excluding adult Examples: Dashboards and other
| leg, summary pér year] | _height of 6 inches| Business Intelligence (81)
Processing Relles Derived Variables platforms; includes data quality
(eg, patient matchingand|  (eg, computable reporting
linkage between sources) phenotypes)

Figure 2. Datamart components and relationship to external systems and processes.
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Structure of Electronic Health Records

DATA M ARTS:
STRENGTHS AND WEAKNESSES

e Strengths
o Registry like
o Multiple clinical subject areas for cohort
e Regularly scheduled data refresh
Ideal For: Posing variety of questions across subject area

e Soft Spots
o More time and effort to create than data extract
e Structure not easily adaptable
o Data are fixed between refreshes
Not Ideal For: Small, targeted analyses
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ADDING INFORMATION BACK INTO EHR

Dashboards

Best Practice Alerts

Predictive Analytics

Clinical trial recruitment (Snifters)
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Structure of Electronic Health Records

DIFFERENT TYPES OF CLINIC ENVIRONMENTS

e Clinic Based System (e.g. Practice Fusion, Flatiron)

o Capture Routine Care

e Local Population

o Misses inpatient activity
e Hospital Based System

o Observe inpatient procedures and events

e Only observe when sick

o Referral hospitals may not represent local or stable population
e Comprehensive Medical System (e.g. VA, Kaiser)

o Observe all types of patient encounters
o May represent artificial population
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Collaborative Clinical Research
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FOUR WAYS EHR DATA DIFFER FROM
TRADITIONAL CLINICAL DATA

@ We don’t have everything we want

@ Outcomes are not defined - need to phenotype data
@ Data irregularly and potentially densely observed

@ Data not observed randomly - Informed Presence
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MoSsT EHRS ARE INCOMPLETE

e Patients seek care at multiple facilities
e Missing information on when individuals are healthy
e EHRs don’t always contain all the data you want
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Research with EHR Data

LINKING EHR DATA

o Data from other facilities (PCORNet)
e Claims: Center for Medicaire & Medicaid Services (CMS)

e Mortality: National Death Index (NDI) & Social Security Death
Index (SSDI)

e Genetic Data
e GeoCode Information: American Community Survey (ACS)
e Personal Tracking Data: FitBit, sensors
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Research with EHR Data

ISSUES OF DATA DEFINITION:
WHAT IS A DIABETIC?

Research and ap|

A comparison of phenotype definitions

for diabetes mellitus

Rachel L Rihesson,' helley A Rusincorich,” Dougls Wirted” Bryan C Batch,!
Mark N Feinglos," Marie Lym Miranda, W £d Hammond, " Robert

Susan E Spratt”
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ISSUES OF DATA DEFINITION:
WHAT IS A DIABETIC?

ICD-9 250.x0 Expand. ICD-9

ICD-9 & 250.x2 (249.xx, 357.2, Abnormal Diabetes

250.xx type I) 362.0x, 366.41) HbA1c OGTT Meds
ICD-9 250.xx X
CMS CCwW X* X*
NYC A1c Registry X
Meds X
DDC X X X X X X
SUPREME-DM X* X* X X X X
eMERGE X* X X X

* Distinction between Inpatient and Outpatient Visits
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Sensitivity (TPF)

Research with EHR Data

DEFINITION DIFFERENCES

Diabetes Validation Results faceted by Endpoint

Concluding Thoughts
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IMPACT OF POORER DEFINITIONS

Bias in Odds Ratio

Sensitivity

Specificity

Odds Ratio
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ADDITIONAL PHENOTYPING CHALLENGES

o Death: Internal work estimates 20% capture of deaths
o Disease Incidence: Need to apply ‘burn-in’ periods
e Censoring: Need to apply ‘burn-out’ periods
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Research with EHR Data

MULTIPLE MEASUREMENTS PER PERSON

OPPORTUNITIES
e Get to observe patient’s evolving health status
o More frequent visits than a typical longitudinal study
e Denser visit information

CHALLENGES
e Visits are irregularly spaced
e Different ways to aggregate
e Don’t know what you are not seeing
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LOOK AT CHANGES OVER LONG PERIODS OF TIME...
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...OR SHORT PERIODS OF TIME

Individual Blood Pressure Curves

180
|

Systolic BP

140
|

Elapsed Time (hrs)
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Research with EHR Data

ANALYZING REPEATED MEASURES

Summarizing Data \ Modelling Progression
Mean/Median Values Regression Splines
Extreme Values Functional Data Analysis
Variability Joint Models

Number of Measurements
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SIMPLER METHODS OFTEN WORK BEST

Systolic Blood Pressure
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EHR DATA OPTIMIZED FOR NEARER TERM PREDICTION

ROC Curves for Forecasting SCD
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ToP PREDICTORS

1 Day 7 Days 30 Days

1 LabValue: Albumin LabValue: Albumin LabValue: Albumin

2  Pre Systolic BP Pre Systolic BP Pre Systolic BP

3 Pre MAP Pre MAP Lowest Systolic BP

4 Pre Pulse Pressure LabValue: WBC LabValue: Creatinine

5 LabValue: Hemoglobin  Medication Dose: Epogen  Pre MAP

6 Lowest Systolic BP LabValue: Creatinine Post MAP

90 Days 180 Days 365 Days

1 LabValue: Albumin LabValue: Albumin LabValue: Albumin
2 Pre Weight Pre Weight Medication Dose: Epogen
3  Pre Systolic BP Pre Map Age
4 Pre Pulse Pressure Post Weight LabValue: Creatinine
5 Medication Dose: Epogen  Medication Dose: Epogen  Pre Systolic BP
6  Post Weight Pre Systolic BP Pre Pulse Pressure
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ToP PREDICTORS

1 Day 7 Days 30 Days

1 LabValue: Albumin LabValue: Albumin LabValue: Albumin

2  Pre Systolic BP Pre Systolic BP Pre Systolic BP

3 Pre MAP Pre MAP Lowest Systolic BP

4  Pre Pulse Pressure LabValue: WBC LabValue: Creatinine

5 LabValue: Hemoglobin  Medication Dose: Epogen  Pre MAP

6 Lowest Systolic BP LabValue: Creatinine Post MAP

90 Days 180 Days 365 Days

1 LabValue: Albumin LabValue: Albumin LabValue: Albumin
2 Pre Weight Pre Weight Medication Dose: Epogen
3  Pre Systolic BP Pre Map Age
4  Pre Pulse Pressure Post Weight LabValue: Creatinine
5 Medication Dose: Epogen  Medication Dose: Epogen  Pre Systolic BP
6  Post Weight Pre Systolic BP Pre Pulse Pressure
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Research with EHR Data

Concluding Thoughts

DIFFERENT DATA ELEMENTS HAVE DIFFERENT
PREDICTABILITY

C-Statistics
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BIASES IN EHRS:
INFORMED PRESENCE

e We only see patients when they are sick
e We only see information that is deemed important
e Different environments have different policies

34/50
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INFORMED PRESENCE I:
WHERE A PERSON SEEKS CARE IS INFORMATIVE

Mean Hemoglobin A1C

o
S
v
0
9 o |
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v
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JR S
o |
~
T T T
ED Inpatient Outpatient
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Research with EHR Data

LOCATION IMPACTS INFERENCE

e Hazard Ratio for HgB A1C for time to Myocardial Infarction

Type | Hazard Ratio | P-value
Unadjusted 1.06 (1.01,1.11) | 0.026
Adjusted for Location | 0.97 (0.92,1.02) | 0.178
OP Only 1.07 (1.00, 1.14) | 0.044
ED Only 0.94 (0.89,0.99) | 0.022

o Interaction between A1C and location
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INFORMED PRESENCE II:
WHICH HOSPITAL A PATIENT USES IS INFORMATIVE

Diabetes Cancer
N=2,783 N=477

pDumMcC DRH pDumMcC DRH

m
(S

LCHC 6792 LCHC 9091
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FACILITY IMPACTS INFERENCE

e Odds Ratio for Cancer Status on Diabetes

Location | Odds Ratio | 95% Cl

All Facilities 1.69 (1.36, 2.10)
DUMC Only 1.46 (1.15, 1.87)
DRH Only 0.89 (0.63, 1.26)
LCHC Only 1.08 (0.74, 1.56)

38/5



Structure of Electronic Health Records Research with EHR Data Concluding Thoughts

INFORMED PRESENCE III:
REFERAL HOSPITALS ARE AN Admixed POPULATION

100%

80%-

60%-

40%-

All Cause Survival

20%-+
—_— Referral
= Non-Referral
0% - T T T T T T T T T T

00 05 10 15 20 25 30 35 40 45 50

Years to Last Known Alive

Humber at risk
| 5522 3307 2690 2159 1748 1360 995 697 474 282 65
Non-Referral 2114 1532 1318 1110 882 697 519 387 262 7 64
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Research with EHR Data

ADMIXTURE BIAS

e Comparison of Local and Referal Patients at Cardiac
Catheterization Lab

Local Patients \ Referal Patients
Older Younger
More Comorbidities More severe valve disease

Disease due to ageing | Disease due systematic factors
Better outcomes More follow-up procedures
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INFORMED PRESENCE 1IV:
NEED TO ACCOUNT FOR NUMBER OF ENCOUNTERS

Regression of Depression on Weight Loss

Odds Ratio Alog(OR) A OR
Minimally Adjusted 3.98 (3.81, 4.17) —

+ No. Encounters  2.37 (2.26, 2.50) -0.52 -1.61

+ Comorbidities 2.82 (2.69, 2.96) -0.35 -1.16

+ No. Encounters & Comorb 2.30 (2.18, 2.42) -0.55 -1.68
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Research with EHR Data

NUMBER OF ENCOUNTERS POTENTIAL CONFOUNDER

Concluding Thoughts

N

. s
o

42/50



Structure of Electronic Health Records Research with EHR Data Concluding Thoughts

NEED TO ACCOUNT FOR NUMBER OF ENCOUNTERS

Median Number of Encounters
Sensitivity  Without Condition ~ With Condition
Depression 56.3% 6 38
Weight Loss 9.3% 7 45
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NUMBER OF ENCOUNTERS POTENTIAL CONFOUNDER

Bias In Estimated Association

—— No Adjustment
—— Adjustment

1.0

Bias
0.5

AL H +++++ n

T T T T T
0.2 0.4 0.6 0.8 1.0

-0.5
|

Probability of Capturing Exposure

44/50



@ STRUCTURE OF ELECTRONIC HEALTH RECORDS

© RESEARCH WITH EHR DATA

© CONCLUDING THOUGHTS

«O>» «Fr «

it
a
i

Dacr
45/50



Concluding Thoughts

EXTRA CARE NEEDED

o Need to be mindful from where the data come

e There is not always one way to turn raw data into analytic data
e Which data to cut is more important than how you analyze it

e New analytic techniques may be useful/necessary
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Concluding Thoughts

QUESTIONS TO ASK WHEN DESIGNING EHR BASED
STUDIES

e Where in the health system are the data collected?
e What is the coverage/catchment area of your health system?
e Is the patient population receiving care across multiple
institutions/centers?
Do the data constitute different catchments? (Admixture)
How are you defining exposures and outcomes? (Phenotyping)
How are you defining person-time?
e What is an appropriate burn-in period to define a cohort?
e Is a burn-out period necessary to define censoring?
e Do different populations produce more information (i.e. sicker
patients have more encounters)?



Structure of Electronic Health Records Research with EHR Data Concluding Thoughts

ADDITIONAL FRONTIERS

e Micro-randomized trials
o Integration of external data
o Real time risk assessment

48/50
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IS IT ALL BAD?

A LOT OF OPPORTUNITIES WITH EHRS
o More studies
o Cheaper studies
o Faster studies
o (Perhaps) More representative studies

Concluding Thoughts
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